dialogflow-fulfillment

Gabriel Farias Caccaos

Apr 04, 2023

OVERVIEW

Installation

1.1 Version support o oo e e e e e e e
1.2 Installing dialogflow-fulfillment e
Examples

2.1 Dialogflow fulfillment webhook server with Flask
2.2 Dialogflow fulfillment webhook server with Django

Fulfillment overview

3.1
32

What is fulfillment? oL e e
Adetailedexample oL e e e

Webhook client

Contexts

Rich responses

6.1 Card
6.2 TMage e e e e e e e e e
6.3 Payload e e e e e e
6.4 QuickReplies. e
6.5 RichResponse e e
6.6 TeXt e
Contributing guide

7.1 How can I contribute to dialogflow-fulfillment? i i i
Change log

8.1 Unreleased e e e e e
8.2 0.4.5-2023-01-19 L e
83 0.4.4-2021-08-09 o L e e
84 0.4.3-2021-00-29 L e e
85 0.4.2-2020-11-29 L e e
8.6 0.4.1-2020-10-11 o o e e e
8.7 0.4.0-2020-09-12 L e e e
8.8 0.3.0-2020-07-29 L e e
8.9 0.2.0-2020-07-17 . . o o o o e e e e e
8.10 0.1.5-2020-07-17 . . . o o o e e e e e e e
.11 0.1.4-2020-07-17 o o e e e e
8.12 0.1.3-2020-07-17 . . . o o o e e e e e e
8.13 0.1.2-2020-03-27 . . . o o e e e

11

13
13
16
17
18
20
20

9 A simple example
10 Installation

11 Features

12 Limitations
Python Module Index

Index

29

31

33

35

37

39

CHAPTER
ONE

INSTALLATION

1.1 Version support

Note: dialogflow-fulfillment requires Python 3 or later.

1.2 Installing dialogflow-fulfillment

The preferred way to install dialogflow-fulfillment is from PyPI with pip, but it can be installed from source also.

1.2.1 From PyPI

To download dialogflow-fulfillment from PyPI with pip, simply run

$ pip install dialogflow-fulfillment

1.2.2 From source

In order to install dialogflow-fulfillment from the source code, you must clone the repository from GitHub:

$ git clone https://github.com/gcaccaos/dialogflow-fulfillment.git

Then, install dialogflow-fulfillment in editable (-e) mode with pip:

$ cd dialogflow-fulfillment
$ pip install -e .[dev]

https://pypi.org/project/dialogflow-fulfillment/
https://pip.pypa.io/
https://pypi.org/project/dialogflow-fulfillment/
https://pip.pypa.io/
https://pip.pypa.io/

dialogflow-fulfillment

2 Chapter 1. Installation

CHAPTER
TWO

2.1 Dialogflow fulfillment webhook server with Flask

Listing 1: app.py

EXAMPLES

from logging import INFO
from typing import Dict

from flask import Flask, request
from flask.logging import create_logger

from dialogflow_fulfillment import WebhookClient

Create Flask app and enable info level logging
app = Flask(__name__)

logger = create_logger(app)
logger.setLevel (INFO)

def handler(agent: WebhookClient) -> None:
Handle the webhook request."""

e

@app.route('/', methods=['POST'])

def webhook() -> Dict:
"""Handle webhook requests from Dialogflow.
Get WebhookRequest object
request_ = request.get_json(force=True)

i

Log request headers and body
logger.info(f'Request headers: {dict(request.headers);}')
logger.info(f'Request body: {request_}")

Handle request
agent = WebhookClient(request_)
agent.handle_request(handler)

Log WebhookResponse object
logger.info(f'Response body: {agent.response}')

(continues on next page)

dialogflow-fulfillment

(continued from previous page)

return agent.response

if _name__ == '__main__"':
app . run(debug=True)

2.2 Dialogflow fulfillment webhook server with Django

Listing 2: views.py

from json import loads
from logging import getLogger

from django.http import HttpRequest, HttpResponse, JsonResponse
from django.views.decorators.csrf import csrf_exempt

from dialogflow_fulfillment import WebhookClient

logger = getlogger('django.server.webhook")

def handler(agent: WebhookClient) -> None:
"""Handle the webhook request.

i

@csrf_exempt
def webhook(request: HttpRequest) -> HttpResponse:
"""Handle webhook requests from Dialogflow."""
if request.method == 'POST':
Get WebhookRequest object
request_ = loads(request.body)

Log request headers and body

logger.info(f'Request headers: {dict(request.headers) /')
logger.info(f'Request body: {request_}')

Handle request

agent = WebhookClient(request_)
agent.handle_request(handler)

Log WebhookResponse object
logger.info(f'Response body: {agent.response}')

return JsonResponse(agent.response)

return HttpResponse()

4 Chapter 2.

Examples

CHAPTER
THREE

FULFILLMENT OVERVIEW

3.1 What is fulfillment?

Dialogflow’s console allows to create simple and static responses for user’s intents in conversations. In order to create
more dynamic and complex responses, such as retrieving information from other services, the intent’s fulfillment
setting must be enabled and a webhook service must be provided:

When an intent with fulfillment enabled is matched, Dialogflow sends a request to your webhook service
with information about the matched intent. Your system can perform any required actions and respond to
Dialogflow with information for how to proceed.

—Source: Fulfillment.

3.2 A detailed example

Fig. 1: A representation of how data flows in a conversation between a user and a Dialogflow agent.

The above diagram is a simplified representation of how data flows in a conversation between a user and a Dialogflow
agent through an user interface. In this example, the user’s intent is fulfilled by the agent with the help of a webhook
service, allowing to handle more dynamic responses, like calling an external API to fetch some information.

The flow of data in a conversation with fulfillment enabled can be described as follows:
1. The user types a text into the application’s front-end in order to send a query to the agent.

2. The input is captured by the application’s back-end, which calls Dialogflow API’s detectIntent * resource, either
via the official client or via HTTPS request in the form of a JSON. The request’s body contain a QueryInput
object, which holds the user’s query (along with other information).

3. Dialogflow detects the intent that corresponds to the user’s query and, since the intent in this example has the
fulfillment setting enabled, posts a WebhookRequest object to the external webhook service via HTTPS in the
form of a JSON. This object has a QueryResult object, which also holds the user’s query and information about
the detected intent, such as the corresponding action, detected entities and input or output contexts.

4. The webhook service uses information from the QueryResult object (along with other data from the
WebhookRequest object) in order to determine how the conversation must go. For example, it could trigger
some event by setting an EventInput, change the value of a parameter in a Context or generate Message
objects using data from external services, such as APIs or databases.

5. In this example, the webhook service calls an external API in order to fulfill the user’s query.

6. Then, a WebhookResponse object with the generated response data is returned to Dialogflow.

https://cloud.google.com/dialogflow/docs/fulfillment-overview

dialogflow-fulfillment

7. Dialogflow validates the response, checking for present keys and value types, and returns a
DetectIntentResponse object to the interface application.

8. Finally, the application’s front-end displays the resulting response message(s) to the user.

6 Chapter 3. Fulfillment overview

CHAPTER
FOUR

WEBHOOK CLIENT

class WebhookClient (request)
Bases: object

A client class for handling webhook requests from Dialogflow.

This class allows to dinamically manipulate contexts and create responses to be sent back to Dialogflow (which
will validate the response and send it back to the end-user).

Parameters request (dict)— The webhook request object (WebhookRequest) from Dialogflow.
Raises TypeError — If the request is not a dictionary.
Return type None

See also:

For more information about the webhook request object, see the WebhookRequest section in Dialogflow’s API
reference.

query
The original query sent by the end-user.

Type str

intent
The intent triggered by Dialogflow.

Type str

action
The action defined for the intent.

Type str

context
An API class for handling input and output contexts.

Type Context

contexts
The array of input contexts.

Type list(dict)

parameters
The intent parameters extracted by Dialogflow.

Type dict

console_messages
The response messages defined for the intent.

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/constants.html#None
https://cloud.google.com/dialogflow/docs/reference/rpc/google.cloud.dialogflow.v2#webhookrequest
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

dialogflow-fulfillment

Type list(RichResponse)

original_request
The original request object from detectIntent/query.

Type str

request_source
The source of the request.

Type str

locale
The language code or locale of the original request.

Type str

session
The session id of the conversation.

Type str

add (responses)
Add response messages to be sent back to Dialogflow.

Examples

Adding a simple text response as a string:

>>> agent.add('Hi! How can I help you?')

Adding multiple rich responses one at a time:

>>> agent.add(Text('How are you feeling today?'))
>>> agent.add(QuickReplies(quick_replies=['"Happy :)', 'Sad :('1))

Adding multiple rich responses at once:

>>> responses = [

Text('How are you feeling today?'),

. QuickReplies(quick_replies=['"Happy :)', 'Sad :('])
-]

>>> agent.add(responses)

Parameters responses (str, RichResponse, list(str, RichResponse)) — A single
response message or a list of response messages.

Return type None

property followup_event: Optional[Dict[str, Any]]
The followup event to be triggered by the response.

8 Chapter 4. Webhook client

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

dialogflow-fulfillment

Examples

Accessing the followup_event attribute:

>>> agent.followup_event
None

Assigning an event name to the followup_event attribute:

>>> agent.followup_event = 'WELCOME'
>>> agent.followup_event
{'name': 'WELCOME', 'languageCode': 'en-US'}

Assigning an event dictionary to the followup_event attribute:

>>> agent.followup_event = {'name': 'GOODBYE', 'languageCode': 'en-US'}
>>> agent.followup_event
{'name': 'GOODBYE', 'languageCode': 'en-US'}

Raises TypeError — If the event is not a string or a dictionary.
Type dict, optional
handle_request (handler)
Handle the webhook request using a handler or a mapping of handlers.

In order to manipulate the conversation programatically, the handler function must receive an instance of
WebhookClient as a parameter. Then, inside the function, WebhookClient’s attributes and methods can
be used to access and manipulate the webhook request attributes and generate the webhook response.

Alternatively, this method can receive a mapping of handler functions for each intent.

Note: If a mapping of handler functions is provided, the name of the corresponding intent must be written
exactly as it is in Dialogflow.

Finally, once the request has been handled, the generated webhook response can be accessed via the
response attribute.

Examples

Creating a simple handler function that sends a text and a collection of quick reply buttons to the end-user
(the response is independent of the triggered intent):

>>> def handler(agent: WebhookClient) -> None:
agent.add('How are you feeling today?')
agent.add(QuickReplies(quick_replies=["Happy :)', 'Sad :('1))

Creating a mapping of handler functions for different intents:

>>> def welcome_handler(agent):
agent.add('Hi!")
agent.add('How can I help you?')

(continues on next page)

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#dict

dialogflow-fulfillment

(continued from previous page)

>>> def fallback_handler(agent):
agent.add('Sorry, I missed what you said.')
agent.add('Can you say that again?')

>>> handler = {
'Default Welcome Intent': welcome_handler,
'Default Fallback Intent': fallback_handler,

Parameters handler (callable, dict(str, callable))- The handler function or a map-
ping of intents to handler functions.

Raises TypeError — If the handler is not a function or a map of functions.
Returns The output from the handler function (if any).
Return type any, optional
property response: Dict[str, Any]
The generated webhook response object (WebhookResponse).
See also:
For more information about the webhook response object, see the WebhookResponse section in Di-
alogflow’s API reference.

Type dict

set_followup_event (event)
Set the followup event to be triggered by Dialogflow.

Warning: This method is deprecated and will be removed. Assign value to the followup_event
attribute instead.

Parameters event (str, dict)- The event to be triggered by Dialogflow.
Warns DeprecationWarning — Assign value to the followup_event attribute instead.

Return type None

10

Chapter 4. Webhook client

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#TypeError
https://cloud.google.com/dialogflow/docs/reference/rpc/google.cloud.dialogflow.v2#webhookresponse
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None

CHAPTER
FIVE

class Context (input_contexts, session)

Bases: object

A client class for accessing and manipulating input and output contexts.

This class provides an API that allows to create, edit or delete contexts during conversations.

Parameters

CONTEXTS

e input_contexts (I1ist (dict)) — The contexts that were active in the conversation when

the intent was triggered by Dialogflow.

» session (str) — The session of the conversation.

Return type None

input_contexts

The contexts that were active in the conversation when the intent was triggered by Dialogflow.

Type list(dict)

session
The session of the conversation.

Type str
contexts

A mapping of context names to context objects (dictionaries).

Type dict(str, dict)

delete(name)
Deactivate an output context by setting its lifespan to 0.

Parameters name (str)— The name of the context.

Return type None

get (name)
Get the context object (if exists).

Parameters name (str) — The name of the context.

Returns The context object (dictionary) if exists.
Return type dict, optional

get_output_contexts_array()
Get the output contexts as an array.

Returns The output contexts (dictionaries).

11

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

dialogflow-fulfillment

Return type list(dict)

set (name, lifespan_count=None, parameters=None)
Set a new context or update an existing context.

Sets the lifepan and parameters of a context (if the context exists) or creates a new output context (if the
context doesn’t exist).

Parameters
e name (str)— The name of the context.
e lifespan_count (int, optional)— The lifespan duration of the context (in minutes).
» parameters (dict, optional)— The parameters of the context.

Raises TypeError — If the name is not a string.

Return type None

12 Chapter 5. Contexts

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/constants.html#None

CHAPTER
SIX

RICH RESPONSES

6.1 Card

class Card(title=None, subtitle=None, image_url=None, buttons=None)
Bases: dialogflow_fulfillment.rich_responses.base.RichResponse

Send a card response to the end-user.

Examples

Constructing a Card response:

>>> card = Card(

title="What is your favorite color?',

subtitle="'Choose a color',

buttons=[{'text': 'Red'}, {'text': 'Green'}, {'text': 'Blue'}]

Parameters
* title (str, optional)— The title of the card response.
» subtitle (str, optional)— The subtitle of the card response. Defaults
» image_url (str, optional)- The URL of the card response’s image.
* buttons (1ist(dict(str, str)), optional) - The buttons of the card response.

Return type None

See also:
For more information about the Card response, see the Card responses section in Dialogflow’s documentation.

property buttons: Optional[List[Dict[str, str]]]
The buttons of the card response.

13

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://cloud.google.com/dialogflow/docs/intents-rich-messages#card

dialogflow-fulfillment

Examples

Accessing the buttons attribute:

>>> card.buttons
[{"text': '"Red'}, {'text': 'Green'}, {'text': 'Blue'}]

Assigning value to the buttons attribute:

>>> card.buttons = [{'text': 'Cyan'}, {'text': 'Magenta'}]
>>> card.buttons
[{'text': '"Cyan'}, {'text': 'Magenta'}]

Raises TypeError — If the value to be assigned is not a list of buttons.

Type list(dict(str, str)), optional

property image_url: Optional[str]
The URL of the card response’s image.

Examples

Accessing the image_url attribute:

>>> card.image_url
None

Assigning value to the image_url attribute:

>>> card.image_url = 'https://picsum.photos/200/300.jpg’
>>> card.image_url
'https://picsum.photos/200/300. jpg’

Raises TypeError — If the value to be assigned is not a string.

Type str, optional

set_buttons (buttons=None)
Set the buttons of the card response.

Warning: This method is deprecated and will be removed. Assign value to the buttons attribute
instead

Parameters buttons (Iist(dict(str, str), optional) — The buttons of the card re-
sponse.

Warns DeprecationWarning — Assign value to the buttons attribute instead.

Return type None

set_image (image_url=None)
Set the URL of the card response’s image.

14 Chapter 6. Rich responses

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

dialogflow-fulfillment

Warning: This method is deprecated and will be removed. Assign value to the image_url attribute
instead

Parameters image_url (str, optional)- The URL of the card response’s image.
Warns DeprecationWarning — Assign value to the image_url attribute instead.

Return type None

set_subtitle (subtitle=None)
Set the subtitle of the card response.

Warning: This method is deprecated and will be removed. Assign value to the subtitle attribute
instead

Parameters subtitle (str, optional)— The subtitle of the card response.
Warns DeprecationWarning — Assign value to the subtitle attribute instead.
Return type None

set_title(title=None)
Set the title of the card response.

Warning: This method is deprecated and will be removed. Assign value to the title attribute instead

Parameters title (str, optional)— The title of the card response.
Warns DeprecationWarning — Assign value to the titIe attribute instead.

Return type None

property subtitle: Optional[str]
The subtitle of the card response.

Examples

Accessing the subtitle attribute:

>>> card.subtitle
'Choose a color'

Assigning value to the subtitle attribute:

>>> card.subtitle = 'Select a color below'
>>> card.subtitle
'Select a color below'

Raises TypeError — If the value to be assigned is not a string.

Type str, optional

6.1.

Card 15

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str

dialogflow-fulfillment

property title: Optional[str]
The title of the card response.

Examples

Accessing the title attribute:

>>> card.title
'What is your favorite color?'

Assigning value to the title attribute:

>>> card.title = 'Which color do you like?'
>>> card.title
'Which color do you like?'

Raises TypeError — If the value to be assigned is not a string.

Type str, optional

6.2 Image

class Image(image_url=None)
Bases: dialogflow_fulfillment.rich_responses.base.RichResponse

Send an image response to the end-user.

Examples

Constructing an image response:

>>> image = Image('https://picsum.photos/200/300.jpg')

Parameters image_url (str, optional)- The URL of the image response.

Return type None

See also:
For more information about the Tmage response, see the Image responses section in Dialogflow’s documentation.

property image_url: Optional[str]
The URL of the image response.

16 Chapter 6. Rich responses

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://cloud.google.com/dialogflow/docs/intents-rich-messages#image

dialogflow-fulfillment

Examples

Accessing the image_url attribute:

>>> image.image_url
'https://picsum.photos/200/300.jpg"’

Assigning a value to the image_url attribute:

>>> image.image_url = 'https://picsum.photos/200/3007?blur. jpg’
>>> image.image_url
'https://picsum.photos/200/3007?blur. jpg’

Raises TypeError — If the value to be assigned is not a string.

Type str, optional

set_image (image_url=None)
Set the URL of the image response.

Warning: This method is deprecated and will be removed. Assign value to the image_url attribute
instead

Parameters image_url (str, optional)- The URL of the image response.
Warns DeprecationWarning — Assign value to the image_url attribute instead.

Return type None

6.3 Payload

class Payload(payload=None)
Bases: dialogflow_fulfillment.rich_responses.base.RichResponse

Send a custom payload response to the end-user.
This type of rich response allows to create advanced, custom, responses.
Examples

Constructing a custom Payload response for file attachments:

>>> payload_data = {
'"attachment': 'https://example.com/files/some_file.pdf"',
"type': 'application/pdf’

ce. b

>>> payload = Payload(payload_data)

Parameters payload (dict, optional) - The content of the custom payload response.

Return type None

6.3. Payload 17

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None

dialogflow-fulfillment

See also:

For more information about the Payload response, see the Custom payload responses section in Dialogflow’s
documentation.

property payload: Optional[Dict[Any, Any]]
The content of the custom payload response.

Examples

Accessing the payload attribute:

>>> payload.payload
{'attachment': 'https://example.com/files/some_file.pdf', 'type': 'application/
—pdf'}

Assigning a value to the payload attribute:

>>> payload.payload = {
'attachment': 'https://example.com/files/another_file.zip',
"type': 'application/zip'
L.}
>>> payload.payload
{'attachment': 'https://example.com/files/another_file.zip', 'type':
< 'application/zip'}

Raises TypeError — If the value to be assigned is not a dictionary.

Type dict, optional

set_payload (payload=None)
Set the content of the custom payload response.

Warning: This method is deprecated and will be removed. Assign value to the payload attribute
instead.

Parameters payload (dict, optional)— The content of the custom payload response.
Warns DeprecationWarning — Assign value to the payload attribute instead.

Return type None

6.4 Quick Replies

class QuickReplies(title=None, quick_replies=None)
Bases: dialogflow_fulfillment.rich_responses.base.RichResponse

Send a collection of quick replies to the end-user.

When a quick reply button is clicked, the corresponding reply text is sent back to Dialogflow as if the user had
typed it.

18 Chapter 6. Rich responses

https://cloud.google.com/dialogflow/docs/intents-rich-messages#custom
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None

dialogflow-fulfillment

Examples

Constructing a QuickReplies response:

>>> quick_replies = QuickReplies('Choose an answer', ['Yes', 'No'])

Parameters
* title (str, optional)— The title of the quick reply buttons.
* quick_replies(list, tuple(str), optional)-The texts for the quick reply buttons.

Return type None

See also:

For more information about the QuickReplies response, see the Quick reply responses section in Dialogflow’s
documentation.

property quick_replies: Optional[Union[List[str], Tuple[str]]]
The texts for the quick reply buttons.

Examples

Accessing the quick_replies attribute:

>>> quick_replies.quick_replies
['"Yes', 'No'l]

Assigning a value to the quick_replies attribute:

>>> quick_replies.quick_replies = ['Yes', 'No', 'Maybe']
>>> quick_replies.quick_replies
['Yes', 'No', 'Maybe']

Raises TypeError - if the value to be assigned is not a list or tuple of strings.

Type list, tuple(str), optional

set_quick_replies(quick_replies=None)
Set the texts for the quick reply buttons.

Warning: This method is deprecated and will be removed. Assign value to the quick_replies
attribute instead.

Parameters quick_replies (1ist, tuple(str), optional)— The texts for the quick re-
ply buttons.

Warns DeprecationWarning — Assign value to the quick_replies attribute instead.
Return type None

set_title(title=None)
Set the title of the quick reply buttons.

6.4. Quick Replies 19

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://cloud.google.com/dialogflow/docs/intents-rich-messages#quick
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

dialogflow-fulfillment

Warning: This method is deprecated and will be removed. Assign value to the tit1e attribute instead.

Parameters title (str, optional) - The title of the quick reply buttons.
Warns DeprecationWarning — Assign value to the titIe attribute instead.

Return type None

property title: Optional[str]
The title of the quick reply buttons.

Examples

Accessing the title attribute:

>>> quick_replies.title
'Choose an answer'

Assigning a value to the title attribute:

>>> quick_replies.title = 'Select yes or no'
>>> quick_replies.title
'Select yes or no'

Raises TypeError — If the value to be assigned is not a string.

Type str, optional

6.5 Rich Response

class RichResponse
Bases: object

The base (abstract) class for the different types of rich responses.
See also:

For more information about the RichResponse, see the Rich response messages section in Dialogflow’s docu-
mentation.

6.6 Text

class Text (text=None)
Bases: dialogflow_fulfillment.rich_responses.base.RichResponse

Send a basic (static) text response to the end-user.

20 Chapter 6. Rich responses

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://cloud.google.com/dialogflow/docs/intents-rich-messages

dialogflow-fulfillment

Examples

Constructing a Text response:

>>> text = Text('this is a text response')

Parameters text (str, optional) — The content of the text response.

Return type None

See also:

For more information about the Text response, see the Text responses section in Dialogflow’s documentation.

set_text (text=None)
Set the content of the text response.

Warning: This method is deprecated and will be removed. Assign value to the text attribute instead.

Parameters text (str, optional)— The content of the text response.
Warns DeprecationWarning — Assign value to the text attribute instead.

Return type None

property text: Optional[str]
The content of the text response.

Examples

Accessing the text attribute:

>>> teXxt.text
'this is a text response'

Assigning a value to the text attribute:

>>> text.text = 'this is a new text response'’
>>> text.text
'"this is a new text response'

Raises TypeError — If the value to be assigned is not a string.

Type str, optional

6.6. Text 21

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://cloud.google.com/dialogflow/docs/intents-rich-messages#text
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str

dialogflow-fulfillment

22 Chapter 6. Rich responses

CHAPTER
SEVEN

CONTRIBUTING GUIDE

7.1 How can | contribute to dialogflow-fulfillment?

If you want to request an enhancement, report a bug, or simply have a question that has not been answered by the
documentation, you are always welcome to create an issue on GitHub.

23

https://dialogflow-fulfillment.readthedocs.io

dialogflow-fulfillment

24 Chapter 7. Contributing guide

CHAPTER
EIGHT

CHANGE LOG

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog and this project adheres to Semantic Versioning.

8.1 Unreleased

8.1.1 Removed

* RichResponse’s set_* methods (use property attributes instead).

* WebhookClient’s set_followup_event method (use property attribute instead).

8.2 0.4.5 - 2023-01-19

Disaster recovery.

8.3 0.4.4 - 2021-08-09

8.3.1 Fixed

* Bug when the webhook request is an empty JSON.

8.3.2 Dependencies

* Bump dependencies in requirements and setup files

25

https://keepachangelog.com/en/1.0.0
https://semver.org/spec/v2.0.0.html

dialogflow-fulfillment

8.4 0.4.3 - 2021-06-29

8.4.1 Added

¢ Code of Conduct file.

8.4.2 Dependencies

* Django example dependencies versions.

8.5 0.4.2 - 2020-11-29

8.5.1 Fixed

* Bug when parsing WebhookRequest object in Django example (#1).

* Bug when calling response in WebhookClient multiple times (#2).

8.6 0.4.1 - 2020-10-11

8.6.1 Added

* Continuous integration and continuous deployment with Github Actions.

8.6.2 Improved

¢ Health of the source code.

¢ Documentation.

8.7 0.4.0 - 2020-09-12

8.7.1 Added

* Getters and setters for RichResponse’s attributes (and deprecation warnings to set_*() methods).

* Getter and setter for WebhookClient’s followup_event attribute (and deprecation warning to set_followup_event()
method).

* Docs: Examples to WebhookClient’s methods docstrings.

* Docs: Examples to RichResponse’s attributes docstrings.

* Docs: “See also” sections in RichResponse’s docstrings.

* Docs: Type hints to WebhookClient’s handle_request() method’s docstring.

* Docs: “Detailed example” section in “Fulfillment overview” page.

26 Chapter 8. Change log

dialogflow-fulfillment

8.7.2 Improved

» Typing annotations coverage.

8.8 0.3.0 - 2020-07-29

8.8.1 Added

* Docs: Change log and contributing guide pages.
* set_text() method for the Text response.

* set_subtitle(), set_image() and set_buttons() methods for the Card response.

set_title() and set_quick_replies() to the QuickReplies response.

8.8.2 Fixed

* Fix missing fields in Card and QuickReply responses.
* Fix optional parameters for all rich responses.
* Fix parsing of Image and Card responses from requests.

 Fix RichResponse instantiation (shouldn’t be able to instantiate an abstract base class).

8.8.3 Improved

* Docs: improve classes and methods docstrings.

8.8.4 Changed
* Docs: Change theme to Read the Docs’ theme.
8.9 0.2.0 - 2020-07-17

8.9.1 Added

e Tests for Context and WebhookClient.

8.9.2 Changed

* Rewrite tests using pytest.

8.8. 0.3.0 - 2020-07-29

27

dialogflow-fulfillment

8.10 0.1.5 - 2020-07-17

8.10.1 Fixed

* Fix a key access error in WebhookClient’s request processing.

8.11 0.1.4 - 2020-07-17

8.11.1 Added

* Type hints for WebhookClient methods.
* Type hints for Context methods.

* Type hints for RichResponse methods.

8.12 0.1.3 - 2020-07-17

8.12.1 Added

* Public API of the package.

8.13 0.1.2 - 2020-03-27

e Initial release.

dialogflow-fulfillment is a package for Python that helps developers to create webhook services for Dialogflow.

The package provides an API for creating and manipulating response messages, output contexts and follow-up events

in conversations.

See also:

For more information about fulfillment and how it works, see Fulfillment overview.

28

Chapter 8. Change log

CHAPTER
NINE

A SIMPLE EXAMPLE

Working with dialogflow-fulfillment is as simple as passing a webhook request object from Dialogflow (a.k.a.
WebhookRequest) to an instance of a lWebhookCIlient and using a handler function (or a mapping of functions for
each intent) via the handle_request () method:

Listing 1: simple_example.py

from dialogflow_fulfillment import QuickReplies, WebhookClient

Define a custom handler function
def handler(agent: WebhookClient) -> None:

e

Handle the webhook request.

This handler sends a text message along with a quick replies
message back to Dialogflow, which uses the messages to build
the final response to the user.

agent.add('How are you feeling today?')
agent.add(QuickReplies(quick_replies=['"Happy :)', 'Sad :(']))

Create an instance of the WebhookClient
agent = WebhookClient(request) # noga: F821

Handle the request using the handler function
agent.handle_request (handler)

The above code produces the resulting response object (a.k.a. WebhookResponse), which can be accessed via the
response attribute:

{
'"fulfillmentMessages': [
{
"text': {
"text': [
'How are you feeling today?'
1
}
1,
{

(continues on next page)

29

dialogflow-fulfillment

(continued from previous page)

"quickReplies': {
'quickReplies': [
"Happy ',
'Sad : ('

30 Chapter 9. A simple example

CHAPTER
TEN

INSTALLATION

The preferred way to install dialogflow-fulfillment is from PyPI with pip:

$ pip install dialogflow-fulfillment

See also:

For further details about the installation, see Installation.

31

https://pypi.org/project/dialogflow-fulfillment/
https://pip.pypa.io/

dialogflow-fulfillment

32 Chapter 10. Installation

CHAPTER
ELEVEN

FEATURES

dialogflow-fulfillment’s key features are:
* Webhook Client: handle webhook requests using a custom handler function or a map of handlers for each intent
» Contexts: process input contexts and add, set or delete output contexts in conversations
* Events: trigger follow-up events with optional parameters
* Rich Responses: create and send the following types of rich response messages:
— Text
— Image
- Card
Quick Replies

Payload

33

dialogflow-fulfillment

34 Chapter 11. Features

CHAPTER
TWELVE

LIMITATIONS

Currently, dialogflow-fulfillment has some drawbacks, which will be addressed in the future:

* No support for platform-specific responses

35

dialogflow-fulfillment

36 Chapter 12. Limitations

PYTHON MODULE INDEX

d

dialogflow_fulfillment.contexts, 11
dialogflow_fulfillment.webhook_client, 7

37

dialogflow-fulfillment

38 Python Module Index

A

action (WebhookClient attribute), 7
add () (WebhookClient method), 8

B

buttons (Card property), 13

C

Card (class in dialogflow_fulfillment.rich_responses), 13
console_messages (WebhookClient attribute), 7
Context (class in dialogflow_fulfillment.contexts), 11
context (WebhookClient attribute), 7

contexts (Context attribute), 11

contexts (WebhookClient attribute), 7

D

delete() (Context method), 11

dialogflow_fulfillment.contexts
module, 11

dialogflow_fulfillment.webhook_client
module, 7

F

followup_event (WebhookClient property), 8

G

get () (Context method), 11
get_output_contexts_array() (Context method), 11

H

handle_request () (WebhookClient method), 9

Image (class in dialogflow_fulfillment.rich_responses),
16

image_url (Card property), 14

image_url (Image property), 16

input_contexts (Context attribute), 11

intent (WebhookClient attribute), 7

INDEX

L

locale (WebhookClient attribute), 8

M

module
dialogflow_fulfillment.contexts, 11
dialogflow_fulfillment.webhook_client, 7

O

original_request (WebhookClient attribute), 8

P

parameters (WebhookClient attribute), 7

Payload (class in dialogflow_fulfillment.rich_responses),
17

payload (Payload property), 18

Q

query (WebhookClient attribute), 7

quick_replies (QuickReplies property), 19

QuickReplies (class in
alogflow_fulfillment.rich_responses), 18

di-

R

request_source (WebhookClient attribute), 8

response (WebhookClient property), 10

RichResponse (class in
alogflow_fulfillment.rich_responses.base),
20

di-

S

session (Context attribute), 11

session (WebhookClient attribute), 8

set () (Context method), 12

set_buttons() (Card method), 14
set_followup_event () (WebhookClient method), 10
set_image () (Card method), 14

set_image () (Image method), 17

set_payload() (Payload method), 18
set_quick_replies() (QuickReplies method), 19
set_subtitle() (Card method), 15

39

dialogflow-fulfillment

set_text () (Text method), 21
set_title() (Card method), 15
set_title() (QuickReplies method), 19
subtitle (Card property), 15

T

Text (class in dialogflow_fulfillment.rich_responses), 20
text (Text property), 21

title (Card property), 15

title (QuickReplies property), 20

W

WebhookClient (class in di-
alogflow_fulfillment.webhook_client), 7

40

Index

	Installation
	Version support
	Installing dialogflow-fulfillment
	From PyPI
	From source

	Examples
	Dialogflow fulfillment webhook server with Flask
	Dialogflow fulfillment webhook server with Django

	Fulfillment overview
	What is fulfillment?
	A detailed example

	Webhook client
	Contexts
	Rich responses
	Card
	Image
	Payload
	Quick Replies
	Rich Response
	Text

	Contributing guide
	How can I contribute to dialogflow-fulfillment?

	Change log
	Unreleased
	Removed

	0.4.5 - 2023-01-19
	0.4.4 - 2021-08-09
	Fixed
	Dependencies

	0.4.3 - 2021-06-29
	Added
	Dependencies

	0.4.2 - 2020-11-29
	Fixed

	0.4.1 - 2020-10-11
	Added
	Improved

	0.4.0 - 2020-09-12
	Added
	Improved

	0.3.0 - 2020-07-29
	Added
	Fixed
	Improved
	Changed

	0.2.0 - 2020-07-17
	Added
	Changed

	0.1.5 - 2020-07-17
	Fixed

	0.1.4 - 2020-07-17
	Added

	0.1.3 - 2020-07-17
	Added

	0.1.2 - 2020-03-27

	A simple example
	Installation
	Features
	Limitations
	Python Module Index
	Index

